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Abstract. A four-mode Lorenz model for the rotating Rayleigh-BCnard system is construc- 
ted which reproduces the results of a linear stability analysis of the hydrodynamic equations. 
An extension of this model predicts that the Kuppers-Lortz instability occurs at a critical 
Taylor number of T, = 80n4 and a critical angle Oc given by tan Oc = 4/& 

An interesting hydrodynamic instability was discovered by Kuppers and Lortz [ 1,2] 
who showed that in a rotating Rayleigh-BCnard system, if the rotation speed exceeds 
a critical value, the two-dimensional roll solutions are no longer stable against perturba- 
tions by rolls with a different axis. The critical dimensionless rotation speed was found 
to be a, = 24 for large Prandtl number, a, and free boundary conditions. It was shown 
by Busse and Clever [3], from a numerical analysis, that once the critical speed was 
exceeded there was evidence of noise in the system and this direct transition to 
turbulence at the Kuppers-Lortz threshold was experimentally observed by Niemela 
and Donnelly [4]. In this letter we propose a Lorenz model for the rotating Rayleigh- 
BCnard problem that not only reproduces the thresholds of convection (stationary and 
oscillatory) correctly for free boundaries but also exhibits the Kuppers-Lortz instability. 
In fact the favoured angle for the off-axis perturbing rolls and the critical rotation 
speed can be analytically determined in closed form. 

The hydrodynamic equations describing the rotating system require three indepen- 
dent variables in the Boussinesq approximation. These are the z component of the 
velocity field, the z component of the vorticity and the fluctuation of the temperature 
from the steady state profile in the absence of convection. We use dimensionless 
variables, scaling distances by d (plate separation), time by d 2 /  v ( v  is the kinematic 
viscosity), temperature by AT (temperature difference between the plates) and velocity 
by A / d  ( A  is the thermal diffusivity). The dimensionless variables are w ( z  component 
of velocity), J ( z  component of vorticity) and 0 (the temperature fluctuations). The 
governing equations are [ 51 

V2 V -- w = T D ~ - R V ~ ~  ( a4) 
( v2 -$) J = -rDw 

( v2 - (7;) e = --w + (" . v)0 
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where we have dropped the non-linear terms in the equations for w and 5 (anticipating 
the use of free boundary conditions which do not lead to contributions from these 
terms in the Lorenz model), R is the Rayleigh number, T = T~ = 4n2d4/ v 2  is the Taylor 
number and D is the operator 3/82. 

The linear stability analysis of the above system shows that stationary convection 
occurs at 

( 7r2 + + T7r2 
R,  = 

af 

where 

(4) 

The standard Lorenz model for two-dimensional rolls can be obtained by the following 
expansions for the different fields (the roll axis is taken to be the y axis) 

( 6 )  

(7) 

( 8 )  

w = a(  t )  cos a,x sin 7rz 

5 =f( t )  cos a,x cos 7rz 

8 = b( t )  cos a,x sin 7rz + c( t )  sin 27rz. 

Inserting the above expansions into (1)-(3) and equating coefficients of Fourier terms 
on either side we arrive at 

X = U ( - X +  Y + t G )  ( 9 a )  

G =  -U( G +  t X )  ( 9 b )  

Y = - X Z + r X - Y  (9c)  

2 = X Y  - bZ ( 9 4  

where X ,  Y ,  Z and G are scaled versions of a, b, c and f respectively, r = R /  R, ,  
t = m/( 7r2+ T = T1l2  and b = 47r2/( a:+ 7 ~ ' ) .  The state X = Y = Z = G = 0 is the 
conduction state which is destabilised in favour of stationary convection when r = 1 + t 2  
in agreement with (4). The model also allows for oscillatory convection and the results 
obtained from this system are in agreement with the linear stability analysis of the full 
hydrodynamic equations with free boundary conditions. The effect of the non-linear 
terms can also be treated and will be discussed in detail elsewhere. 

Here we wish to extend the above model to include the Kuppers-Lortz instability. 
To do so we need to introduce y dependence in the fields and accordingly we take 

w = a ( t )  cos a,x sin 7rz + a ,  ( t )  cos( k , x  + k2y)  sin 7rz 

5 =f( t )  COS U,X COS TZ +fi( t )  COS( klx  + k2y) COS n~ 

(10) 

(11) 

8 = b( t )  cos a,x sin 7rz + c( t )  sin 27rz + b,(  t )  cos( k ,x  + k2y)  sin 7rz 

+ [ c,( t )  cos( k , x  + a,x + k 2 y )  + c2( t )  cos( k,x  - a,x + k 2 y ) ]  sin 27rz. (12) 

The corresponding Lorenz model is 

X = a ( - X +  Y+ tG) 
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1 -COS e i+cos  e sin 8 sin 8 
( 1 3 ~ )  GIZlc-+ GIZ2c- X,Z,--  Y = - X Z + r X -  Y - X ~ Z , - -  4 4 4 4 

Z = XY +XI Y ,  - bZ 

X l = ~ ( - X 1 +  YI+tGl) 

GI = -U( GI + t X l )  

1 -COS e 1+cos 8 sin 8 sin 8 + C- GZI - c - GZ2 
4 4 

X Z ,  - Y ,  = - X , Z  + rX1 - Y ,  - X Z ,  - - 

( Y X ,  +XU,)  - b+Zl+ c-(G1 Y - GYI) 

( 13g) 4 4 

(1 -COS e) sin 8 
2 2 

2, = 

(13i)  
(1  +cos e) sin 0 

( Y X ~ + X Y ~ ) - ~ - Z ~ + C - ( G Y ~ - G , Y ) .  
2 2 

z, = 

Here k: + k: = a:, k ,  = a, cos 8, k2 = a, sin 8, c = ( v2 + af)"2/ T and XI , Y,  , 2, , 2, and 
GI are scaled forms of a , ,  b , ,  c , ,  c2 and f, respectively and 

4 T 2 + 2 ~ : ( i * ~ ~ ~  e) 
T2+ a: 

b, = 

It is easy to see that the trivial fixed point describing the conduction state is 
X = Y = 2 = G = XI = Yl = Z1 = 2, = GI = 0.  The two-dimensional rolls are given 
either by XI = Y, = 2, = 2, = GI = 0 and the others non-zero or by X = Y = G = Z1 = 
2, = 0 and the remaining ones non-zero. The Kiippers-Lortz instability pertains to the 
perturbing effect of one of the roll systems on the other. Supposing the roll system is 
formed with the axis in the y direction, we ask the question whether it can be destabilised 
by the other set of rolls whose axis is not along the y axis. The rolls along the y axis 
are described by 

Z , = r - ( t 2 + 1 )  (14a) 

Go = - tXo (14b) 

Yo = X,( 1 + t 2 )  (14c) 

X : =  (1  + t2)-'bZo. ( 1 4 4  

and 

The linear stability of this state against perturbation by X ,  , Yl , G I ,  ZI and 2, can be 
studied from a linearised five by five system. 

Trying solutions of the form ep', we find that Re p = I m p  = 0 if 

b+( 1 +COS e),+ b-( 1 -COS e)' 
Ts ine=( r r2+af )  

b+(l+cos e)-b-(l-cos e) ' 
We can solve for e in terms of T and a, from the above to find 

tan e = ( X  +2)-7r d r 2  -4(x+ I ) ( x + ~ ) ]  

T2 = 4(X + 1 ) ( X  + 2)V4 

(16) 

(17) 

where x = a f / r 2  and r = T / T , .  Clearly the minimum value of T will be obtained for 
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which, combined with (5) leads to x = 3, implying that 

and 
tan e,=Jy ec 2: 610 

7, = IT2 .  

Thus, the critical rotation speed above which the two-dimensional rolls are unstable 
is found to be somewhat higher than the result of Kuppers and Lortz, although the 
critical angle for the axis roll agrees quite well. The non-trivial fixed point describing 
the simultaneous presence of the two sets of rolls can be easily obtained from (13a)- 
( 1 3 9  and is found to be 

Y = X ( 1 + t 2 ) ,  G = - t X  (20a) 
Y1 =XI( l+  t 2 ) ,  GI = -tXl (20b) 
b+z1 = ( 1  -COS e)( 1 + t2)xx, (20c) 
b-2,  = ( 1  +COS e)( 1 + t2)xx, ( 2 0 4  
bZ=(1+t2) (X2+X:)  W e )  
AX2 = A,X: (20f) 

m a )  

where 

A, = ct sin e[b-( 1 -COS e) - b+(l +cos e)] -[b+(l +cos 
and 

A = ct sin e[b+(l +COS e) - b-(1 -COS e)] - [b+( 1 +cos e)'+ b-(1 -cos e)'] 
b-( 1 -cos e)'] (21b) 

r 
x2[;( I+:) -&] = 1 + - 1 .  

We note that AI is always less than zero. Thus X, can exist only if A is less than zero, 
i.e. for T <  T ~ .  For T >  T,, the roll system with axis at an angle to the y axis cannot 
exist as a steady state, and the roll system with axis along the y axis is unstable to 
perturbations by the other set of rolls. Since the destabilisation of the two-dimensional 
rolls at T = T, does not occur via a Hopf bifurcation, it is not expected to lead to a 
simple oscillatory state. Consequently we conjecture that for T > T, a direct transition 
to a chaotic state occurs at r = 1 + t 2 .  

We end by noting that our value of T~ is significantly different from that obtained 
by Kuppers and Lortz. The reason lies in the fact that the amplitudes a , ,  b, , f l  , c, c, 
and c2 are all independent variables in the Lorenz model, whereas in the analysis of 
the hydrodynamic equations these coefficients are obtained from a perturbative solution 
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Of  (1)-(3). 
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